Experience from successful Power-to-Gas projects

Gregor Waldstein,
Zaragoza June 15th 2016
ETOGAS GmbH

As Pioneer of the Power-to-Gas concept
ETOGAS supplies Electrolyzers and Methanizers tailored for the required application

PRODUCTS AND SERVICES

Power-to-Gas turn-key systems
- Power-to-Hydrogen (PtH2)
- Power-SNG (PtSNG)
- Hydrogen-to-SNG (H2tSNG)

Consulting/Services
- Feasibility Studies & Power-to-Gas Business Model Design
- Basic Engineering
- Site Engineering

Project development → Engineering → Hardware supply → Site integration → Service

Megalyzer: Power – to – Hydrogen

Methanizer: Hydrogen – to – Hydrocarbons

Source: ETOGAS
Content

1. About ETOGAS
2. Example of a successful Power-to-Gas project
3. What is the economic value of clean gas for clean mobility?
4. How can Power-to-Gas contribute to integrating clean power from volatile renewables?
5. Legal Framework
The Audi e-gas plant produces Hydrogen - and uses Hydrogen in a refinery to double the output of the local biomethane plant

Audi e-gas plant built by ETOGAS 2012-2013
Audis power provider adaptively sitches the electrolyzer for optimized renewable integration
Audi sells the clean fuel to CNG car customers

Impressions from the Audi e-gas plant (Werlte, Germany, 2013)

Source: ETOGAS
Since 2014 Audi successfully sells the clean fuel option based on clean hydrogen from clean power

Audi e-gas option announced for further new models in 2016

E-gas Option:
Energy consumed by cars = Energy injected into gas grid (Hydrogen or Methane)

Source: Audi
Power-to-Gas creates economic value if five factors are met

Key economic drivers

<table>
<thead>
<tr>
<th>Factor</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Attractive gas price</td>
<td>clean fuel for clean mobility has a high economic value</td>
</tr>
<tr>
<td>2) Smart adaptive power switching</td>
<td>support for renewable power integration creates value</td>
</tr>
<tr>
<td>3) Careful site integration</td>
<td>maximizes efficiency</td>
</tr>
<tr>
<td>4) Tailored technology</td>
<td>low CAPEX, high flexibility, low maintenance cost</td>
</tr>
<tr>
<td>5) Recognition in legal framework</td>
<td>obstacles from regulation can be crucial</td>
</tr>
</tbody>
</table>

Source: ETOGAS
Content

1 About ETOGAS

2 Example of a successful Power-to-Gas project

3 What is the economic value of clean gas for clean mobility?

4 How can Power-to-Gas contribute to integrating clean power from volatile renewables?

5 Legal Framework
Driving clean has a high value – does a clean gas allow for clean driving?

Scope of lifecycle analysis

What is the correct scope to measure emissions?

- **end of pipe**
- **fuel production and distribution**
- **vehicle production and recycling**

Without holistic view wrong judgement is likely!

Source: Audi
The source of energy is critical for driving clean - A clean gas (Hydrogen or Methane) can reduce the GHG footprint of driving by a factor of 20

Comparative lifecycle analysis

Audi: ... as good as BEV

EU FQ-Direktive: ... - 96% to conventional car

No end of pipe Emissions!

Content

1. About ETOGAS
2. Example of a successful Power-to-Gas project
3. What is the economic value of clean gas for clean mobility?
4. How can Power-to-Gas contribute to integrating clean power from volatile renewables?
5. Legal Framework
Does the production of clean gas contribute to supply more clean power?

Power-to-Gas, the power-sector perspective

What is the correct scope to measure emissions?

- **Synergy to renewable integration – less emissions in the power sector** → clean gas
- **Competition for clean power supply – more emissions in power generation** → no clean gas

Source: ETOGAS
Volatile production has below average market value – with more than 20% share serious problems arise

Intermittency challenge for wind power

The grid can take 20% windpower – the subsidy trap is triggered

- **controlled power**
 - increased cost
 - depressed prices

- **volatile power**
 - below average market value
 - To be backed by expensive subsidy?

Source: ETOGAS
Bivalent windparks generate more sable revenue from providing more stable power and from selling hydrogen

Windpower + Power-to-Gas a bivalent production unit

If power peaks are used for Hydrogen production the grid can take > 50% windenergy

- more stable and predictable power with increased market value
- additional revenue - erratic production plan - logistics challenging

Source: ETOGAS
Can erratic supply of hydrogen help to supply clean power?

flexibility challenge for biogas

If power generation from biogas should be restricted to low wind times!

- **Biogas continuous production**
- **steady power but expensive**

In high wind times, CHP should be turned off before electrolyzer switches on.

Source: ETOGAS
Bivalent biogas plants can adapt – If Hydrogen is available they produce Methane with double output – if power is short they supply power

Bivalent biogas plant – adaptive supply of power or gas

When hydrogen is available the CHP plant can stop

- Gas mixture becomes pure as CO2 is converted to CH4
- Alternating operation with continuous heat supply

Source: ETOGAS
With an adaptive Portfolio of assets steady power and clean fuel can be sold on forward markets with long term contracts!

Steady power and clean fuel

Steady power – steady heat – clean fuel

- **Wind Power**
- **Biogas continuous production**
- **adaptive assets**

- **PtH2**
- **H2**
- **Meth**
- **Biomethane**
- **e-gas**
- **Gas network**
 - transport
 - storage
 - trading
- **CHP**
- **Steady power Part 1/2**
- **Steady power Part 2/2**
- **clean fuel**

Source: ETOGAS
A localized time based analysis shows how assets must be combined and deployed in order to provide steady power and clean fuel at minimal cost.

ETOGAS Visualization of asset operation level in 0-24 hours / 0-365 days

Source: ETOGAS
ETOGAS technology is specifically designed to solve the renewables integration problem by production of clean fuel.

Typical annual production pattern for Power-to-Gas in renewables integration scenario

MEGALYZER
ETOGAS ELECTROLYZER TECHNOLOGY

- Megawatt scale
- Fast response
- High efficiency
- Low maintenance

Pressurized Alkaline Electrolyzer Technology

METHANYIZER
ETOGAS METHANATION TECHNOLOGY

- Megawatt scale
- Fast response
- High efficiency
- Low maintenance

Catalytic Methanation Technology

Source: ETOGAS
Content

1 About ETOGAS
2 Example of a successful Power-to-Gas project
3 What is the economic value of clean gas for clean mobility?
4 How can Power-to-Gas contribute to integrating clean power from volatile renewables?
5 Legal Framework
Why don’t we deploy the required assets today?
Regulation is key to attract private investment in cost minimizing infrastructure

Regulatory requirements

- **Regulation drives deployment of renewable technologies**
 - **Recognition of clean fuel**
 - Implement EU advanced biofuels regulations for Hydrogen or Methane on national basis
 - EU guideline: RED FQD 2015, national action to follow in 2017
 - Recognize clean fuel production in fleet emission calculations
 - **Market design for renewables**
 - Support demand conforming delivery from renewable asset portfolios
 - Demand conforming output is important - NOT extra support for backup power or storage
 - The production of Hydrogen in a bivalent wind system must not be burdened with electricity taxes
 - Supply driven electrolyzers are part of a power generation infrastructure taxation and tariffs on adaptive power conversion is not justified

Source: ETOGAS